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Behaviour

introduction . Methods

classification analyses based on the resting-state
functional connectivity (RSFC)

4

« HCP: N =878, age range 22-37 (M = 28.49)

- Machine-learning analyses allow for the prediction EE M « GSP: N = 854, age range: 21-35 (M = 22.92)

of phenotypes from neuroimaging data (e.g. sex) %(())]IFIECC'(OIHG  eNKI: N =190, age range: 20-83 (M = 46.02)

o | » 1000Brains: N = 1000, age range: 21-85 (M = 61.18)

- Which sample characteristics provide highest . —

model performance for within- and between-sample Brain . « Parcelwise approach (Weis et al. (2020, [5]): 400 parcels

predictions? Z v\ Genomics | from the Schaefer Atlas [6]; 36 parcels from the

S A IS)uperstruct \ Brainnetome Atlas [7]

* The present study adresses this question for sex rogect ~/ + Support vector machine (SVM) classifier with 5 repetitions

of a 10-fold cross-validation (Julearn)

 RSFC of four cohorts differing in sample size, age
range and image quality (HCP [1], GSP [2], eNKI [3]
and 1000Brains [4])

« Data of the four cohorts were combined in various
ways to examine which model provides highest
classification accuracies and high generalizability

Medial view
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Results

Table 1. Sex classification accuracies for within- and between sample predictions for model 1-5

Model trained on Within —

predictions

Model applications

W|th|n predlctlons 1000Bra|n‘s

Model 1  75% of 1000Brains, eNKI, 62.9 (53.7 - 70.1) HCP (25%): 65.3 (45.9 - 74.6)
GSP and HCP GSP (25%): 60.6 (49.1 - 70.1)
(N =2190) eNKI (25%): 64.8 (47.9 - 83.3)
1000Brains (25%): 62.9 (52.4 - 75.2)
Model 2 eNKI, GSP, HCP 64.9 (53.0 - 71.3) 1000Brains: 58.0 (49.5 - 68.0)
(N =1922)
Model 3 1000Brains, GSP, HCP 63.8 (53.0 - 70.5) eNKI: 61.4 (50.0 - 72.6)
(N =2732)
Model 4 1000Brains, eNKI, HCP 63.9 (52.8 - 71.7) GSP: 57.3 (48.7 - 68.6)
(N = 2068)
Model 5 1000Brains, eNKI, GSP 61.5 (54.1-68.4) HCP: 59.4 (48.8 - 69.9)
(N = 2044)

Within-predictions

Model 1

0.5 0.84

Figure 1. Spatial pattern of sex
classification accuracies for within- and
between sample predictions for model 1 L

SNKI(25%)

Figure 2. Spatial pattern of sex
classification accuracies for within- and
between sample predictions for model 2-5
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Discussion

 Model 2 was trained on smallest sample size -

Model 2,3 and 4 were trained on samples of

- Consistent spatial pattern of highly classifying

but outperformed all other models the in
within-predictions

 Model 3 displayed higher between-prediction
accuracy compared to model 2,4 and 5

 Despite similar sample sizes, model 4 and 5 .
differed in classification accuracies:
- model 4 achieved higher within-predictions,
model 5 achieved higher between-predictions

different size but exhibited similar ranges of
classification accuracies for within-predictions
- including HCP in training sample results in
similar accuracies for within-predictions (63-64%
mean prediction accuracy)

parcels despite differently trained models

- Higher sample size In training does not
necessarily lead to higher accuracies

- Best generalization performance for model 1
with heterogenous training sample, including
parts of the test-dataset to adapt the model
accordingly

Model 1 achieved highest accuracies for the eNKi-
dataset with up to 83%, exceeding also the within-
predictions for that model

- Model 1 generalized best
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